Complex Number

Monday, 7 November 2022 3:03 PM

M/J/2005/Q3

- (i) Solve the equation $z^2 2iz 5 = 0$, giving your answers in the form x + iy where x and y are real.
- (ii) Find the modulus and argument of each root. [3]
- (iii) Sketch an Argand diagram showing the points representing the roots. [1]

M/J/2009/Q7

- (i) Solve the equation $z^2 + (2\sqrt{3})iz 4 = 0$, giving your answers in the form x + iy, where x and y are real. [3]
- (ii) Sketch an Argand diagram showing the points representing the roots. [1]
- (iii) Find the modulus and argument of each root. [3]
- (iv) Show that the origin and the points representing the roots are the vertices of an equilateral triangle.
 [1]

The complex number z is given by

$$z = (\sqrt{3}) + i$$
.

- (i) Find the modulus and argument of z.
- (ii) The complex conjugate of z is denoted by z^* . Showing your working, express in the form x + iy, where x and y are real,
 - (a) $2z + z^*$,
 - $\mathbf{(b)} \quad \frac{12^*}{2}$

[4]

[2]

(iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers z and iz^* respectively. Prove that angle $AOB = \frac{1}{6}\pi$. [3]

N 4	/1/2	010	107
IVI	/J/21	υτδ	/U/

Throughout this question the use of a calculator is not permitted.

The complex numbers $-3\sqrt{3} + i$ and $\sqrt{3} + 2i$ are denoted by u and v respectively.

- (i) Find, in the form x + iy, where x and y are real and exact, the complex numbers uv and $\frac{u}{v}$. [5]
- (ii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers u and v respectively. Prove that angle $AOB = \frac{2}{3}\pi$. [3]

The complex number u is defined by

$$u = \frac{1+2i}{1-3i}.$$

- (i) Express u in the form x + iy, where x and y are real.
- (ii) Show on a sketch of an Argand diagram the points A, B and C representing the complex numbers u, 1 + 2i and 1 3i respectively. [2]
- (iii) By considering the arguments of 1 + 2i and 1 3i, show that

$$\tan^{-1} 2 + \tan^{-1} 3 = \frac{3}{4}\pi.$$
 [3]

[3]

M/J/2006/Q7

The complex number 2 + i is denoted by u. Its complex conjugate is denoted by u^* .

- (i) Show, on a sketch of an Argand diagram with origin O, the points A, B and C representing the complex numbers u, u^* and $u + u^*$ respectively. Describe in geometrical terms the relationship between the four points O, A, B and C. [4]
- (ii) Express $\frac{u}{u^*}$ in the form x + iy, where x and y are real. [3]
- (iii) By considering the argument of $\frac{u}{u^*}$, or otherwise, prove that

$$\tan^{-1}\left(\frac{4}{3}\right) = 2\tan^{-1}\left(\frac{1}{2}\right).$$
 [2]

O/N/2005/Q7

The equation $2x^3 + x^2 + 25 = 0$ has one real root and two complex roots.

- (i) Verify that 1 + 2i is one of the complex roots. [3]
- (ii) Write down the other complex root of the equation. [1]
- (iii) Sketch an Argand diagram showing the point representing the complex number 1 + 2i. Show on the same diagram the set of points representing the complex numbers z which satisfy

$$|z| = |z - 1 - 2i|$$
. [4]

The complex number u is given by

$$u = \frac{3+\mathrm{i}}{2-\mathrm{i}}.$$

- (i) Express u in the form x + iy, where x and y are real. [3]
- (ii) Find the modulus and argument of u. [2]
- (iii) Sketch an Argand diagram showing the point representing the complex number u. Show on the same diagram the locus of the point representing the complex number z such that |z u| = 1. [3]

The complex number $\frac{2}{-1+i}$ is denoted by u.

- (i) Find the modulus and argument of u and u^2 . [6]
- (ii) Sketch an Argand diagram showing the points representing the complex numbers u and u^2 . Shade the region whose points represent the complex numbers z which satisfy both the inequalities |z| < 2 and $|z u^2| < |z u|$. [4]

- (a) The complex number u is defined by $u = \frac{5}{a+2i}$, where the constant a is real.
 - (i) Express u in the form x + iy, where x and y are real. [2]
 - (ii) Find the value of a for which $\arg(u^*) = \frac{3}{4}\pi$, where u^* denotes the complex conjugate of u. [3]
- (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z which satisfy both the inequalities |z| < 2 and |z| < |z 2 2i|. [4]

O/N/2009/Q7

The complex numbers -2 + i and 3 + i are denoted by u and v respectively.

(i) Find, in the form x + iy, the complex numbers

(a)
$$u + v$$
, [1]

(b)
$$\frac{u}{v}$$
, showing all your working. [3]

(ii) State the argument of
$$\frac{u}{v}$$
. [1]

In an Argand diagram with origin O, the points A, B and C represent the complex numbers u, v and u + v respectively.

(iii) Prove that angle
$$AOB = \frac{3}{4}\pi$$
. [2]

(iv) State fully the geometrical relationship between the line segments OA and BC. [2]

The complex number 3 - i is denoted by u. Its complex conjugate is denoted by u^* .

- (i) On an Argand diagram with origin O, show the points A, B and C representing the complex numbers u, u^* and $u^* u$ respectively. What type of quadrilateral is OABC? [4]
- (ii) Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form x + iy, where x and y are real. [3]
- (iii) By considering the argument of $\frac{u^*}{u}$, prove that

$$\tan^{-1}\left(\frac{3}{4}\right) = 2\tan^{-1}\left(\frac{1}{3}\right).$$
 [3]

(a) Find the complex number z satisfying the equation

$$z + \frac{\mathrm{i}z}{z^*} - 2 = 0,$$

where z^* denotes the complex conjugate of z. Give your answer in the form x + iy, where x and y are real. [5]

- (b) (i) On a single Argand diagram sketch the loci given by the equations |z 2i| = 2 and Im z = 3, where Im z denotes the imaginary part of z. [2]
- (ii) In the first quadrant the two loci intersect at the point P. Find the exact argument of the complex number represented by P. [2]

O/N/2007/Q8

- (a) The complex number z is given by $z = \frac{4-3i}{1-2i}$.
 - (i) Express z in the form x + iy, where x and y are real. [2]
 - (ii) Find the modulus and argument of z.
- (b) Find the two square roots of the complex number 5 12i, giving your answers in the form x + iy, where x and y are real. [6]

[2]

O/N/2011/Q10	
0/N/2011/Q10	

- (a) Showing your working, find the two square roots of the complex number $1 (2\sqrt{6})i$. Give your answers in the form x + iy, where x and y are exact. [5]
- (b) On a sketch of an Argand diagram, shade the region whose points represent the complex numbers z which satisfy the inequality $|z 3i| \le 2$. Find the greatest value of arg z for points in this region.

- (a) The complex number w is such that Re w > 0 and $w + 3w^* = \text{i}w^2$, where w^* denotes the complex conjugate of w. Find w, giving your answer in the form x + iy, where x and y are real. [5]
- (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z which satisfy both the inequalities $|z 2i| \le 2$ and $0 \le \arg(z + 2) \le \frac{1}{4}\pi$. Calculate the greatest value of |z| for points in this region, giving your answer correct to 2 decimal places. [6]

\sim	/nı	120	113	3/08	•
	/ IV	<i>/ /</i> \	,,,) <i>() (</i>	١.

Throughout this question the use of a calculator is not permitted.

(a) The complex numbers u and v satisfy the equations

$$u + 2v = 2i$$
 and $iu + v = 3$.

Solve the equations for u and v, giving both answers in the form x + iy, where x and y are real. [5]

(b) On an Argand diagram, sketch the locus representing complex numbers z satisfying |z + i| = 1 and the locus representing complex numbers w satisfying $\arg(w - 2) = \frac{3}{4}\pi$. Find the least value of |z - w| for points on these loci. [5]

M/J/201		
The c	complex number u is given by $u = -1 + (4\sqrt{3})i$.	
	Without using a calculator and showing all your working, find the two square roots of u . Given your answers in the form $a + ib$, where the real numbers a and b are exact.	ve [5]
	On an Argand diagram, sketch the locus of points representing complex numbers z satisfyi the relation $ z - u = 1$. Determine the greatest value of arg z for points on this locus.	ng [4]

M/J/2019/Q5

Throughout this question the use of a calculator is not permitted.

It is given that the complex number $-1 + (\sqrt{3})i$ is a root of the equation

$$kx^3 + 5x^2 + 10x + 4 = 0,$$

where k is a real constant.

- (i) Write down another root of the equation.
- (ii) Find the value of k and the third root of the equation.

[6]

[1]

The complex number $1 + (\sqrt{2})i$ is denoted by u. The polynomial $x^4 + x^2 + 2x + 6$ is denoted by p(x).

- (i) Showing your working, verify that u is a root of the equation p(x) = 0, and write down a second complex root of the equation. [4]
- (ii) Find the other two roots of the equation p(x) = 0.

[6]

M/J/2017/Q6	
Throughout this question the use of a calculator is not permitted. The complex number $2 - i$ is denoted by u .	
(i) It is given that u is a root of the equation $x^3 + ax^2 - 3x + b = 0$, where the constants a and b a	re [4]
(ii) On a sketch of an Argand diagram, shade the region whose points represent complex number satisfying both the inequalities $ z - u < 1$ and $ z < z + i $.	s z [4]

M/J/2014/Q7

- (a) It is given that $-1 + (\sqrt{5})i$ is a root of the equation $z^3 + 2z + a = 0$, where a is real. Showing your working, find the value of a, and write down the other complex root of this equation. [4]
- **(b)** The complex number w has modulus 1 and argument 2θ radians. Show that $\frac{w-1}{w+1} = i \tan \theta$. [4]

The variable complex number z is given by

$$z = 1 + \cos 2\theta + i \sin 2\theta,$$

where θ takes all values in the interval $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

- (i) Show that the modulus of z is $2\cos\theta$ and the argument of z is θ . [6]
- (ii) Prove that the real part of $\frac{1}{z}$ is constant. [3]

M/J	/2008	/05

The variable complex number z is given by

$$z = 2\cos\theta + i(1 - 2\sin\theta),$$

where θ takes all values in the interval $-\pi < \theta \leq \pi$.

- (i) Show that |z i| = 2, for all values of θ . Hence sketch, in an Argand diagram, the locus of the point representing z. [3]
- (ii) Prove that the real part of $\frac{1}{z+2-i}$ is constant for $-\pi < \theta < \pi$. [4]

- (ii) Hence, without using a calculator, express $\frac{2+6i}{1-2i}$ in the form $r(\cos\theta+i\sin\theta)$, where r>0 and $-\pi<\theta\leqslant\pi$, giving the exact values of r and θ .
- (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities $|z 3i| \le 1$ and $\text{Re } z \le 0$, where Re z denotes the real part of z. Find the greatest value of arg z for points in this region, giving your answer in radians correct to 2 decimal places.