## Numerical Solutions

## M/J/2013/Q2

The sequence of values given by the iterative formula

$$
x_{n+1}=\frac{x_{n}\left(x_{n}^{3}+100\right)}{2\left(x_{n}^{3}+25\right)}
$$

with initial value $x_{1}=3.5$, converges to $\alpha$.
(i) Use this formula to calculate $\alpha$ correct to 4 decimal places, showing the result of each iteration to 6 decimal places.

The equation $x^{3}-2 x-2=0$ has one real root.
(i) Show by calculation that this root lies between $x=1$ and $x=2$.
(ii) Prove that, if a sequence of values given by the iterative formula

$$
x_{n+1}=\frac{2 x_{n}^{3}+2}{3 x_{n}^{2}-2}
$$

converges, then it converges to this root.
(iii) Use this iterative formula to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

The equation $x^{3}-x^{2}-6=0$ has one real root, denoted by $\alpha$.
(i) Find by calculation the pair of consecutive integers between which $\alpha$ lies.
(ii) Show that, if a sequence of values given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\sqrt{ }\left(x_{n}+\frac{6}{x_{n}}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to $\alpha$.
(iii) Use this iterative formula to determine $\alpha$ correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

The equation $x^{3}-8 x-13=0$ has one real root.
(i) Find the two consecutive integers between which this root lies.
(ii) Use the iterative formula

$$
x_{n+1}=\left(8 x_{n}+13\right)^{\frac{1}{3}}
$$

to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

The equation $x^{3}-x-3=0$ has one real root, $\alpha$.
(i) Show that $\alpha$ lies between 1 and 2 .

Two iterative formulae derived from this equation are as follows:

$$
\begin{align*}
& x_{n+1}=x_{n}^{3}-3  \tag{A}\\
& x_{n+1}=\left(x_{n}+3\right)^{\frac{1}{3}} . \tag{B}
\end{align*}
$$

Each formula is used with initial value $x_{1}=1.5$.
(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate $\alpha$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching a suitable pair of graphs, show that the equation

$$
2-x=\ln x
$$

has only one root.
(ii) Verify by calculation that this root lies between 1.4 and 1.7.
(iii) Show that this root also satisfies the equation

$$
\begin{equation*}
x=\frac{1}{3}(4+x-2 \ln x) \tag{1}
\end{equation*}
$$

(iv) Use the iterative formula

$$
x_{n+1}=\frac{1}{3}\left(4+x_{n}-2 \ln x_{n}\right),
$$

with initial value $x_{1}=1.5$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
\operatorname{cosec} x=\frac{1}{2} x+1 \tag{2}
\end{equation*}
$$

where $x$ is in radians, has a root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify, by calculation, that this root lies between 0.5 and 1 .
(iii) Show that this root also satisfies the equation

$$
\begin{equation*}
x=\sin ^{-1}\left(\frac{2}{x+2}\right) \tag{1}
\end{equation*}
$$

(iv) Use the iterative formula

$$
x_{n+1}=\sin ^{-1}\left(\frac{2}{x_{n}+2}\right)
$$

with initial value $x_{1}=0.75$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
2 \cot x=1+\mathrm{e}^{x}, \tag{2}
\end{equation*}
$$

where $x$ is in radians, has only one root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify by calculation that this root lies between 0.5 and 1.0.
(iii) Show that this root also satisfies the equation

$$
\begin{equation*}
x=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x}}\right) \tag{1}
\end{equation*}
$$

(iv) Use the iterative formula

$$
x_{n+1}=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x_{n}}}\right),
$$

with initial value $x_{1}=0.7$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching suitable graphs, show that the equation

$$
\begin{equation*}
4 x^{2}-1=\cot x \tag{2}
\end{equation*}
$$

has only one root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify by calculation that this root lies between 0.6 and 1 .
(iii) Use the iterative formula

$$
x_{n+1}=\frac{1}{2} \sqrt{ }\left(1+\cot x_{n}\right)
$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
\sec x=3-\frac{1}{2} x^{2} \tag{2}
\end{equation*}
$$

where $x$ is in radians, has a root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify by calculation that this root lies between 1 and 1.4.
(iii) Show that this root also satisfies the equation

$$
\begin{equation*}
x=\cos ^{-1}\left(\frac{2}{6-x^{2}}\right) \tag{1}
\end{equation*}
$$

(iv) Use an iterative formula based on the equation in part (iii) to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


The diagram shows the curve $y=x \cos 2 x$ for $0 \leqslant x \leqslant \frac{1}{4} \pi$. The point $M$ is a maximum point.
(i) Show that the $x$-coordinate of $M$ satisfies the equation $1=2 x \tan 2 x$.
(ii) The equation in part (i) can be rearranged in the form $x=\frac{1}{2} \tan ^{-1}\left(\frac{1}{2 x}\right)$. Use the iterative formula

$$
x_{n+1}=\frac{1}{2} \tan ^{-1}\left(\frac{1}{2 x_{n}}\right),
$$

with initial value $x_{1}=0.4$, to calculate the $x$-coordinate of $M$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(iii) Use integration by parts to find the exact area of the region enclosed between the curve and the $x$-axis from 0 to $\frac{1}{4} \pi$.


The diagram shows the curve $y=\frac{\sin x}{x}$ for $0<x \leqslant 2 \pi$, and its minimum point $M$.
(i) Show that the $x$-coordinate of $M$ satisfies the equation

$$
x=\tan x .
$$

(ii) The iterative formula

$$
x_{n+1}=\tan ^{-1}\left(x_{n}\right)+\pi
$$

can be used to determine the $x$-coordinate of $M$. Use this formula to determine the $x$-coordinate of $M$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


The diagram shows the curve $y=\mathrm{e}^{-\frac{1}{2} x^{2}} \sqrt{ }\left(1+2 x^{2}\right)$ for $x \geqslant 0$, and its maximum point $M$.
(i) Find the exact value of the $x$-coordinate of $M$.
(ii) The sequence of values given by the iterative formula

$$
x_{n+1}=\sqrt{ }\left(\ln \left(4+8 x_{n}^{2}\right)\right),
$$

with initial value $x_{1}=2$, converges to a certain value $\alpha$. State an equation satisfied by $\alpha$ and hence show that $\alpha$ is the $x$-coordinate of a point on the curve where $y=0.5$.
(iii) Use the iterative formula to determine $\alpha$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


The diagram shows the curve $y=x^{2} \cos 2 x$ for $0 \leqslant x \leqslant \frac{1}{4} \pi$. The curve has a maximum point at $M$ where $x=p$.
(i) Show that $p$ satisfies the equation $p=\frac{1}{2} \tan ^{-1}\left(\frac{1}{p}\right)$.
(ii) Use the iterative formula $p_{n+1}=\frac{1}{2} \tan ^{-1}\left(\frac{1}{p_{n}}\right)$ to determine the value of $p$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(iii) Find, showing all necessary working, the exact area of the region bounded by the curve and the $x$-axis.

The equation of a curve is $y=x \ln (8-x)$. The gradient of the curve is equal to 1 at only one point, when $x=a$.
(i) Show that $a$ satisfies the equation $x=8-\frac{8}{\ln (8-x)}$.
(ii) Verify by calculation that $a$ lies between 2.9 and 3.1.
(iii) Use an iterative formula based on the equation in part (i) to determine $a$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

It is given that $\int_{1}^{a} \ln (2 x) \mathrm{d} x=1$, where $a>1$.
(i) Show that $a=\frac{1}{2} \exp \left(1+\frac{\ln 2}{a}\right)$, where $\exp (x)$ denotes $\mathrm{e}^{x}$.
(ii) Use the iterative formula

$$
a_{n+1}=\frac{1}{2} \exp \left(1+\frac{\ln 2}{a_{n}}\right)
$$

to determine the value of $a$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

It is given that $\int_{0}^{a} x \cos \frac{1}{3} x \mathrm{~d} x=3$, where the constant $a$ is such that $0<a<\frac{3}{2} \pi$.
(i) Show that $a$ satisfies the equation

$$
\begin{equation*}
a=\frac{4-3 \cos \frac{1}{3} a}{\sin \frac{1}{3} a} \tag{5}
\end{equation*}
$$

(ii) Verify by calculation that $a$ lies between 2.5 and 3 .
(iii) Use an iterative formula based on the equation in part (i) to calculate $a$ correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

The constant $a$ is such that $\int_{0}^{a} x \mathrm{e}^{\frac{1}{2} x} \mathrm{~d} x=6$.
(i) Show that a satisfies the equation

$$
x=2+\mathrm{e}^{-\frac{1}{2} x}
$$

(ii) By sketching a suitable pair of graphs, show that this equation has only one root.
(iii) Verify by calculation that this root lies between 2 and 2.5.
(iv) Use an iterative formula based on the equation in part (i) to calculate the value of $a$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


The diagram shows a sector $A O B$ of a circle with centre $O$ and radius $r$. The angle $A O B$ is $\alpha$ radians, where $0<\alpha<\pi$. The area of triangle $A O B$ is half the area of the sector.
(i) Show that $\alpha$ satisfies the equation

$$
\begin{equation*}
x=2 \sin x . \tag{2}
\end{equation*}
$$

(ii) Verify by calculation that $\alpha$ lies between $\frac{1}{2} \pi$ and $\frac{2}{3} \pi$.
(iii) Show that, if a sequence of values given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{3}\left(x_{n}+4 \sin x_{n}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to a root of the equation in part (i).
(iv) Use this iterative formula, with initial value $x_{1}=1.8$, to find $\alpha$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


In the diagram, $A B C D$ is a rectangle with $A B=3 a$ and $A D=a$. A circular arc, with centre $A$ and radius $r$, joins points $M$ and $N$ on $A B$ and $C D$ respectively. The angle $M A N$ is $x$ radians. The perimeter of the sector $A M N$ is equal to half the perimeter of the rectangle.
(i) Show that $x$ satisfies the equation

$$
\begin{equation*}
\sin x=\frac{1}{4}(2+x) \tag{3}
\end{equation*}
$$

(ii) This equation has only one root in the interval $0<x<\frac{1}{2} \pi$. Use the iterative formula

$$
x_{n+1}=\sin ^{-1}\left(\frac{2+x_{n}}{4}\right),
$$

with initial value $x_{1}=0.8$, to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


In the diagram, $A B C$ is a triangle in which angle $A B C$ is a right angle and $B C=a$. A circular arc, with centre $C$ and radius $a$, joins $B$ and the point $M$ on $A C$. The angle $A C B$ is $\theta$ radians. The area of the sector $C M B$ is equal to one third of the area of the triangle $A B C$.
(i) Show that $\theta$ satisfies the equation

$$
\begin{equation*}
\tan \theta=3 \theta \tag{2}
\end{equation*}
$$

(ii) This equation has one root in the interval $0<\theta<\frac{1}{2} \pi$. Use the iterative formula

$$
\theta_{n+1}=\tan ^{-1}\left(3 \theta_{n}\right)
$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


The diagram shows a circle with centre $O$ and radius $r$. The tangents to the circle at the points $A$ and $B$ meet at $T$, and the angle $A O B$ is $2 x$ radians. The shaded region is bounded by the tangents $A T$ and $B T$, and by the minor arc $A B$. The perimeter of the shaded region is equal to the circumference of the circle.
(i) Show that $x$ satisfies the equation

$$
\begin{equation*}
\tan x=\pi-x . \tag{3}
\end{equation*}
$$

(ii) This equation has one root in the interval $0<x<\frac{1}{2} \pi$. Verify by calculation that this root lies between 1 and 1.3.
(iii) Use the iterative formula

$$
x_{n+1}=\tan ^{-1}\left(\pi-x_{n}\right)
$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


The diagram shows a triangle $A B C$ in which $A B=A C=a$ and angle $B A C=\theta$ radians. Semicircles are drawn outside the triangle with $A B$ and $A C$ as diameters. A circular arc with centre $A$ joins $B$ and $C$. The area of the shaded segment is equal to the sum of the areas of the semicircles.
(i) Show that $\theta=\frac{1}{2} \pi+\sin \theta$.
(ii) Verify by calculation that $\theta$ lies between 2.2 and 2.4 .
(iii) Use an iterative formula based on the equation in part (i) to determine $\theta$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


In the diagram, $A$ is the mid-point of the semicircle with centre $O$ and radius $r$. A circular arc with centre $A$ meets the semicircle at $B$ and $C$. The angle $O A B$ is equal to $x$ radians. The area of the shaded region bounded by $A B, A C$ and the arc with centre $A$ is equal to half the area of the semicircle.
(i) Use triangle $O A B$ to show that $A B=2 r \cos x$.
(ii) Hence show that $x=\cos ^{-1} \sqrt{ }\left(\frac{\pi}{16 x}\right)$.
(iii) Verify by calculation that $x$ lies between 1 and 1.5 .
(iv) Use an iterative formula based on the equation in part (ii) to determine $x$ correct to 3 decimal places. Give the result of each iteration to 5 decimal places.


In the diagram, $A$ is a point on the circumference of a circle with centre $O$ and radius $r$. A circular arc with centre $A$ meets the circumference at $B$ and $C$. The angle $O A B$ is equal to $x$ radians. The shaded region is bounded by $A B, A C$ and the circular arc with centre $A$ joining $B$ and $C$. The perimeter of the shaded region is equal to half the circumference of the circle.
(i) Show that $x=\cos ^{-1}\left(\frac{\pi}{4+4 x}\right)$.
(ii) Verify by calculation that $x$ lies between 1 and 1.5 .
(iii) Use the iterative formula

$$
x_{n+1}=\cos ^{-1}\left(\frac{\pi}{4+4 x_{n}}\right)
$$

to determine the value of $x$ correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


In the diagram, $A$ is a point on the circumference of a circle with centre $O$ and radius $r$. A circular arc with centre $A$ meets the circumference at $B$ and $C$. The angle $O A B$ is $\theta$ radians. The shaded region is bounded by the circumference of the circle and the arc with centre $A$ joining $B$ and $C$. The area of the shaded region is equal to half the area of the circle.
(i) Show that $\cos 2 \theta=\frac{2 \sin 2 \theta-\pi}{4 \theta}$.
(ii) Use the iterative formula

$$
\theta_{n+1}=\frac{1}{2} \cos ^{-1}\left(\frac{2 \sin 2 \theta_{n}-\pi}{4 \theta_{n}}\right),
$$

with initial value $\theta_{1}=1$, to determine $\theta$ correct to 2 decimal places, showing the result of each iteration to 4 decimal places.

