Polynomials

Monday, 30 May 2022 7:33 PM

M/J/2005/Q5

The polynomial $x^4 + 5x + a$ is denoted by p(x). It is given that $x^2 - x + 3$ is a factor of p(x).

- (i) Find the value of a and factorise p(x) completely. [6]
- (ii) Hence state the number of real roots of the equation p(x) = 0, justifying your answer. [2]

The polynomial $x^3 - 2x + a$, where a is a constant, is denoted by p(x). It is given that (x + 2) is a factor of p(x).

(i) Find the value of a. [2]

[2]

(ii) When a has this value, find the quadratic factor of p(x).

O/N/2007Q2

The polynomial $x^4 + 3x^2 + a$, where a is a constant, is denoted by p(x). It is given that $x^2 + x + 2$ is a factor of p(x). Find the value of a and the other quadratic factor of p(x). [4]

O/N/2008/Q5

The polynomial $4x^3 - 4x^2 + 3x + a$, where a is a constant, is denoted by p(x). It is given that p(x) is divisible by $2x^2 - 3x + 3$.

- (i) Find the value of a. [3]
- (ii) When a has this value, solve the inequality p(x) < 0, justifying your answer. [3]

O/N/2009/Q5

The polynomial $2x^3 + ax^2 + bx - 4$, where a and b are constants, is denoted by p(x). The result of differentiating p(x) with respect to x is denoted by p'(x). It is given that (x + 2) is a factor of p(x) and of p'(x).

- (i) Find the values of a and b. [5]
- (ii) When a and b have these values, factorise p(x) completely. [3]

The polynomial $x^4 + 3x^3 + ax + 3$ is denoted by p(x). It is given that p(x) is divisible by $x^2 - x + 1$.

(i) Find the value of a. [4]

(ii) When a has this value, find the real roots of the equation p(x) = 0. [2]

M/J/2013/Q4

The polynomial $ax^3 - 20x^2 + x + 3$, where a is a constant, is denoted by p(x). It is given that (3x + 1) is a factor of p(x).

(i) Find the value of a. [3]

(ii) When a has this value, factorise p(x) completely. [3]

O/N/2014/Q5

The polynomial $ax^3 + bx^2 + x + 3$, where a and b are constants, is denoted by p(x). It is given that (3x + 1) is a factor of p(x), and that when p(x) is divided by (x - 2) the remainder is 21. Find the values of a and b.

The polynomial $8x^3 + ax^2 + bx - 1$, where a and b are constants, is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that when p(x) is divided by (2x + 1) the remainder is 1.

(i) Find the values of a and b. [5]

(ii) When a and b have these values, factorise p(x) completely. [3]

O/N/2019/Q3

The polynomial $x^4 + 3x^3 + ax + b$, where a and b are constants, is denoted by p(x). When p(x) is divided by $x^2 + x - 1$ the remainder is 2x + 3. Find the values of a and b. [5]