Trigonometry

O/N/2010/Q3

Solve the equation

$$\cos(\theta + 60^\circ) = 2\sin\theta,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

\sim	/NI	/201	12	/Q3
U.	/IN	/ ZU.	LZ.	/U3

$$\sin(\theta + 45^\circ) = 2\cos(\theta - 30^\circ),$$

giving all solutions in the interval $0^{\circ} < \theta < 180^{\circ}$.

[5]

O/N/2018/Q2

Showing all necessary working, solve the equation $\sin(\theta - 30^\circ) + \cos\theta = 2\sin\theta$, for $0^\circ < \theta < 180^\circ$. [4]

$$\cos(x + 30^\circ) = 2\cos x,$$

giving all solutions in the interval $-180^{\circ} < x < 180^{\circ}$.

(i) Show that the equation

$$\tan(45^\circ + x) - \tan x = 2$$

can be written in the form

$$\tan^2 x + 2\tan x - 1 = 0. ag{3}$$

[4]

(ii) Hence solve the equation

$$\tan(45^\circ + x) - \tan x = 2,$$

giving all solutions in the interval $0^{\circ} \le x \le 180^{\circ}$.

\sim	/NI	/201	フノへつ	ANS:1	60
u	/ IN.	<i>1</i> ZUI	//US	AINO. I	U.O

By expressing the equation $\tan(\theta + 60^\circ) + \tan(\theta - 60^\circ) = \cot\theta$ in terms of $\tan\theta$ only, solve the equation for $0^\circ < \theta < 90^\circ$. [5]

(i) Show that the equation $\tan(30^{\circ} + \theta) = 2\tan(60^{\circ} - \theta)$ can be written in the form

$$\tan^2 \theta + (6\sqrt{3}) \tan \theta - 5 = 0.$$
 [4]

(ii) Hence, or otherwise, solve the equation

$$\tan(30^{\circ} + \theta) = 2\tan(60^{\circ} - \theta),$$

for
$$0^{\circ} \leqslant \theta \leqslant 180^{\circ}$$
. [3]

Showing all necessary	working, solve the equation $\cot \theta + \cot(\theta + 45^\circ) = 2$, for $0^\circ < \theta < 180^\circ$.	[5]

The angles θ and ϕ lie between 0° and 180° , and are such that

$$tan(\theta - \phi) = 3$$
 and $tan \theta + tan \phi = 1$.

Find the possible values of θ and ϕ .

[6]

- (i) Express $7\cos\theta + 24\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation

$$7\cos\theta + 24\sin\theta = 15,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

By expressing $8 \sin \theta - 6 \cos \theta$ in the form $R \sin(\theta - \alpha)$, solve the equation

$$8\sin\theta - 6\cos\theta = 7,$$

for
$$0^{\circ} \le \theta \le 360^{\circ}$$
. [7]

- (i) Express $3 \sin \theta + 2 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the exact value of R and giving the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation

$$3\sin\theta + 2\cos\theta = 1$$
,

for
$$0^{\circ} < \theta < 180^{\circ}$$
. [3]

- (i) Express $(\sqrt{6}) \sin x + \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 3 decimal places. [3]
- (ii) Hence solve the equation $(\sqrt{6}) \sin 2\theta + \cos 2\theta = 2$, for $0^{\circ} < \theta < 180^{\circ}$. [4]

- (i) Express $\cos x + 3\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation $\cos 2\theta + 3\sin 2\theta = 2$, for $0^{\circ} < \theta < 90^{\circ}$. [5]

(i) Express $5 \sin x + 12 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]

[5]

(ii) Hence solve the equation

$$5\sin 2\theta + 12\cos 2\theta = 11,$$

giving all solutions in the interval
$$0^{\circ} < \theta < 180^{\circ}$$
.

- (i) By first expanding $\cos(x + 45^\circ)$, express $\cos(x + 45^\circ) (\sqrt{2}) \sin x$ in the form $R \cos(x + \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. Give the value of R correct to 4 significant figures and the value of α correct to 2 decimal places. [5]
- (ii) Hence solve the equation

$$\cos(x + 45^\circ) - (\sqrt{2})\sin x = 2,$$

for
$$0^{\circ} < x < 360^{\circ}$$
. [4]

Showing all necessary working, solve the equation $\cot 2\theta = 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$.

$$\csc 2\theta = \sec \theta + \cot \theta$$
,

giving all solutions in the interval $0^{\circ} < \theta < 360^{\circ}$.

[6]

$$\cos\theta + 4\cos 2\theta = 3,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 180^{\circ}$.

 $\tan x \tan 2x = 1,$

giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$.

[4]

- (i) Express the equation $\cot \theta 2 \tan \theta = \sin 2\theta$ in the form $a \cos^4 \theta + b \cos^2 \theta + c = 0$, where a, b and c are constants to be determined. [3]
- (ii) Hence solve the equation $\cot \theta 2 \tan \theta = \sin 2\theta$ for $90^{\circ} < \theta < 180^{\circ}$. [2]

(i) Prove the identity $\csc 2\theta + \cot 2\theta \equiv \cot \theta$. [3]

(ii) Hence solve the equation $\csc 2\theta + \cot 2\theta = 2$, for $0^{\circ} \le \theta \le 360^{\circ}$. [2]

(i) Prove the identity

$$\cos 4\theta + 4\cos 2\theta \equiv 8\cos^4 \theta - 3.$$
 [4]

(ii) Hence solve the equation

$$\cos 4\theta + 4\cos 2\theta = 2,$$

for
$$0^{\circ} \le \theta \le 360^{\circ}$$
. [4]

(i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

[4]

- (ii) Show that, after making the substitution $x = \frac{2\sin\theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0,$$

giving your answers correct to 3 significant figures.