Vectors

O/N/2006/Q4
The position vectors of points A and B are $\left(\begin{array}{r}-3 \\ 6 \\ 3\end{array}\right)$ and $\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)$ respectively, relative to an origin O.
(i) Calculate angle $A O B$.
(ii) The point C is such that $\overrightarrow{A C}=3 \overrightarrow{A B}$. Find the unit vector in the direction of $\overrightarrow{O C}$.

Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
4 \\
1 \\
-2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r}
3 \\
2 \\
-4
\end{array}\right)
$$

(i) Given that C is the point such that $\overrightarrow{A C}=2 \overrightarrow{A B}$, find the unit vector in the direction of $\overrightarrow{O C}$.

The position vector of the point D is given by $\overrightarrow{O D}=\left(\begin{array}{l}1 \\ 4 \\ k\end{array}\right)$, where k is a constant, and it is given that $\overrightarrow{O D}=m \overrightarrow{O A}+n \overrightarrow{O B}$, where m and n are constants.
(ii) Find the values of m, n and k.

Relative to an origin O, the position vectors of points P and Q are given by

$$
\overrightarrow{O P}=\left(\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right) \quad \text { and } \quad \overrightarrow{O Q}=\left(\begin{array}{l}
2 \\
1 \\
q
\end{array}\right)
$$

where q is a constant.
(i) In the case where $q=3$, use a scalar product to show that $\cos P O Q=\frac{1}{7}$.
(ii) Find the values of q for which the length of $\overrightarrow{P Q}$ is 6 units.

Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}
$$

(i) Use a scalar product to find angle $A O B$, correct to the nearest degree.
(ii) Find the unit vector in the direction of $\overrightarrow{A B}$.
(iii) The point C is such that $\overrightarrow{O C}=6 \mathbf{j}+p \mathbf{k}$, where p is a constant. Given that the lengths of $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are equal, find the possible values of p.

The position vectors of the points A and B, relative to an origin O, are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{c}
k \\
-k \\
2 k
\end{array}\right)
$$

where k is a constant.
(i) In the case where $k=2$, calculate angle $A O B$.
(ii) Find the values of k for which $\overrightarrow{A B}$ is a unit vector.

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j} \quad \text { and } \quad \overrightarrow{O B}=4 \mathbf{i}+p \mathbf{k}
$$

(i) In the case where $p=6$, find the unit vector in the direction of $\overrightarrow{A B}$.
(ii) Find the values of p for which angle $A O B=\cos ^{-1}\left(\frac{1}{5}\right)$.

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}
$$

(i) Use a vector method to find angle $A O B$.

The point C is such that $\overrightarrow{A B}=\overrightarrow{B C}$.
(ii) Find the unit vector in the direction of $\overrightarrow{O C}$.
(iii) Show that triangle $O A C$ is isosceles.

Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{c}
4 \\
1 \\
p
\end{array}\right) .
$$

(i) Find the value of p for which $\overrightarrow{O A}$ is perpendicular to $\overrightarrow{O B}$.
(ii) Find the values of p for which the magnitude of $\overrightarrow{A B}$ is 7 .

The position vectors of points A and B, relative to an origin O, are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
6 \\
-2 \\
-6
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r}
3 \\
k \\
-3
\end{array}\right)
$$

where k is a constant.
(i) Find the value of k for which angle $A O B$ is 90°.
(ii) Find the values of k for which the lengths of $O A$ and $O B$ are equal.

The point C is such that $\overrightarrow{A C}=2 \overrightarrow{C B}$.
(iii) In the case where $k=4$, find the unit vector in the direction of $\overrightarrow{O C}$.

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=5 \mathbf{i}+\mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=2 \mathbf{i}+7 \mathbf{j}+p \mathbf{k},
$$

where p is a constant.
(i) Find the value of p for which angle $A O B$ is 90°.
(ii) In the case where $p=4$, find the vector which has magnitude 28 and is in the same direction as $\overrightarrow{A B}$.
(i) Find the angle between the vectors $3 \mathbf{i}-4 \mathbf{k}$ and $2 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$.

The vector $\overrightarrow{O A}$ has a magnitude of 15 units and is in the same direction as the vector $3 \mathbf{i}-4 \mathbf{k}$. The vector $\overrightarrow{O B}$ has a magnitude of 14 units and is in the same direction as the vector $2 \mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$.
(ii) Express $\overrightarrow{O A}$ and $\overrightarrow{O B}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(iii) Find the unit vector in the direction of $\overrightarrow{A B}$.

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=3 \mathbf{i}+p \mathbf{j}+q \mathbf{k}
$$

where p and q are constants.
(i) State the values of p and q for which $\overrightarrow{O A}$ is parallel to $\overrightarrow{O B}$.
(ii) In the case where $q=2 p$, find the value of p for which angle $B O A$ is 90°.
(iii) In the case where $p=1$ and $q=8$, find the unit vector in the direction of $\overrightarrow{A B}$.

Relative to an origin O, the position vectors of three points A, B and C are given by

$$
\overrightarrow{O A}=3 \mathbf{i}+p \mathbf{j}-2 p \mathbf{k}, \quad \overrightarrow{O B}=6 \mathbf{i}+(p+4) \mathbf{j}+3 \mathbf{k} \quad \text { and } \quad \overrightarrow{O C}=(p-1) \mathbf{i}+2 \mathbf{j}+q \mathbf{k}
$$

where p and q are constants.
(i) In the case where $p=2$, use a scalar product to find angle $A O B$.
(ii) In the case where $\overrightarrow{A B}$ is parallel to $\overrightarrow{O C}$, find the values of p and q.

The diagram shows a trapezium $O A B C$ in which $O A$ is parallel to $C B$. The position vectors of A and B relative to the origin O are given by $\overrightarrow{O A}=\left(\begin{array}{r}2 \\ -2 \\ -1\end{array}\right)$ and $\overrightarrow{O B}=\left(\begin{array}{l}6 \\ 1 \\ 1\end{array}\right)$.
(i) Show that angle $O A B$ is 90°.

The magnitude of $\overrightarrow{C B}$ is three times the magnitude of $\overrightarrow{O A}$.
(ii) Find the position vector of C.
(iii) Find the exact area of the trapezium $O A B C$, giving your answer in the form $a \sqrt{ } b$, where a and b are integers.

Relative to an origin O, the position vectors of points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
0 \\
2 \\
-3
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
2 \\
5 \\
-2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
3 \\
p \\
q
\end{array}\right)
$$

(i) In the case where $A B C$ is a straight line, find the values of p and q.
(ii) In the case where angle $B A C$ is 90°, express q in terms of p.
(iii) In the case where $p=3$ and the lengths of $A B$ and $A C$ are equal, find the possible values of q.

The diagram shows a trapezium $A B C D$ in which $B A$ is parallel to $C D$. The position vectors of A, B and C relative to an origin O are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
$$

(i) Use a scalar product to show that $A B$ is perpendicular to $B C$.
(ii) Given that the length of $C D$ is 12 units, find the position vector of D.

Relative to the origin O, the position vectors of the points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{r}
10 \\
0 \\
6
\end{array}\right) .
$$

(i) Find angle $A B C$.

The point D is such that $A B C D$ is a parallelogram.
(ii) Find the position vector of D.

The diagram shows a semicircular prism with a horizontal rectangular base $A B C D$. The vertical ends $A E D$ and $B F C$ are semicircles of radius 6 cm . The length of the prism is 20 cm . The mid-point of $A D$ is the origin O, the mid-point of $B C$ is M and the mid-point of $D C$ is N. The points E and F are the highest points of the semicircular ends of the prism. The point P lies on $E F$ such that $E P=8 \mathrm{~cm}$.

Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O D, O M$ and $O E$ respectively.
(i) Express each of the vectors $\overrightarrow{P A}$ and $\overrightarrow{P N}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to calculate angle $A P N$.

The diagram shows a solid cylinder standing on a horizontal circular base with centre O and radius 4 units. Points A, B and C lie on the circumference of the base such that $A B$ is a diameter and angle $B O C=90^{\circ}$. Points P, Q and R lie on the upper surface of the cylinder vertically above A, B and C respectively. The height of the cylinder is 12 units. The mid-point of $C R$ is M and N lies on $B Q$ with $B N=4$ units.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to $O B$ and $O C$ respectively and the unit vector \mathbf{k} is vertically upwards.
Evaluate $\overrightarrow{P N} \cdot \overrightarrow{P M}$ and hence find angle $M P N$.

The diagram shows the roof of a house. The base of the roof, $O A B C$, is rectangular and horizontal with $O A=C B=14 \mathrm{~m}$ and $O C=A B=8 \mathrm{~m}$. The top of the roof $D E$ is 5 m above the base and $D E=6 \mathrm{~m}$. The sloping edges $O D, C D, A E$ and $B E$ are all equal in length.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to $O A$ and $O C$ respectively and the unit vector \mathbf{k} is vertically upwards.
(i) Express the vector $\overrightarrow{O D}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}, and find its magnitude.
(ii) Use a scalar product to find angle $D O B$.

The diagram shows a cube $O A B C D E F G$ in which the length of each side is 4 units. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $\overrightarrow{O A}, \overrightarrow{O C}$ and $\overrightarrow{O D}$ respectively. The mid-points of $O A$ and $D G$ are P and Q respectively and R is the centre of the square face $A B F E$.
(i) Express each of the vectors $\overrightarrow{P R}$ and $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $Q P R$.
(iii) Find the perimeter of triangle $P Q R$, giving your answer correct to 1 decimal place.

In the diagram, $O A B C D E F G$ is a cube in which each side has length 6 . Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $\overrightarrow{O A}, \overrightarrow{O C}$ and $\overrightarrow{O D}$ respectively. The point P is such that $\overrightarrow{A P}=\frac{1}{3} \overrightarrow{A B}$ and the point Q is the mid-point of $D F$.
(i) Express each of the vectors $\overrightarrow{O Q}$ and $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Find the angle $O Q P$.

The diagram shows a pyramid $O A B C P$ in which the horizontal base $O A B C$ is a square of side 10 cm and the vertex P is 10 cm vertically above O. The points D, E, F, G lie on $O P, A P, B P, C P$ respectively and $D E F G$ is a horizontal square of side 6 cm . The height of $D E F G$ above the base is $a \mathrm{~cm}$. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O A, O C$ and $O D$ respectively.
(i) Show that $a=4$.
(ii) Express the vector $\overrightarrow{B G}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(iii) Use a scalar product to find angle $G B A$.

The diagram shows a three-dimensional shape. The base $O A B$ is a horizontal triangle in which angle $A O B$ is 90°. The side $O B C D$ is a rectangle and the side $O A D$ lies in a vertical plane. Unit vectors \mathbf{i} and \mathbf{j} are parallel to $O A$ and $O B$ respectively and the unit vector \mathbf{k} is vertical. The position vectors of A, B and D are given by $\overrightarrow{O A}=8 \mathbf{i}, \overrightarrow{O B}=5 \mathbf{j}$ and $\overrightarrow{O D}=2 \mathbf{i}+4 \mathbf{k}$.
(i) Express each of the vectors $\overrightarrow{D A}$ and $\overrightarrow{C A}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $C A D$.

The diagram shows a three-dimensional shape $O A B C D E F G$. The base $O A B C$ and the upper surface $D E F G$ are identical horizontal rectangles. The parallelograms $O A E D$ and $C B F G$ both lie in vertical planes. Points P and Q are the mid-points of $O D$ and $G F$ respectively. Unit vectors \mathbf{i} and \mathbf{j} are parallel to $\overrightarrow{O A}$ and $\overrightarrow{O C}$ respectively and the unit vector \mathbf{k} is vertically upwards. The position vectors of A, C and D are given by $\overrightarrow{O A}=6 \mathbf{i}, \overrightarrow{O C}=8 \mathbf{j}$ and $\overrightarrow{O D}=2 \mathbf{i}+10 \mathbf{k}$.
(i) Express each of the vectors $\overrightarrow{P B}$ and $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Determine whether P is nearer to Q or to B.
(iii) Use a scalar product to find angle $B P Q$.

With respect to the origin O, the points A and B have position vectors given by

$$
\overrightarrow{O A}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}
$$

The line l has vector equation $\mathbf{r}=4 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}+s(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$.
(i) Prove that the line l does not intersect the line through A and B.

The points A and B have position vectors, relative to the origin O, given by

$$
\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}
$$

The line l has vector equation

$$
\mathbf{r}=(1-2 t) \mathbf{i}+(5+t) \mathbf{j}+(2-t) \mathbf{k} .
$$

(i) Show that l does not intersect the line passing through A and B.

The points A and B have position vectors given by $\overrightarrow{O A}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\overrightarrow{O B}=\mathbf{i}+\mathbf{j}+5 \mathbf{k}$. The line l has equation $\mathbf{r}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mu(3 \mathbf{i}+\mathbf{j}-\mathbf{k})$.
(i) Show that l does not intersect the line passing through A and B.

Two lines l and m have equations $\mathbf{r}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}+s(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k})$ and $\mathbf{r}=\mathbf{i}+3 \mathbf{j}+4 \mathbf{k}+t(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$ respectively.
(i) Show that the lines are skew.

The points A and B have position vectors $\mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $3 \mathbf{i}+\mathbf{j}+\mathbf{k}$ respectively. The line l has equation $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}+\mu(\mathbf{i}+\mathbf{j}+2 \mathbf{k})$.
(i) Show that l does not intersect the line passing through A and B.

The points A and B have position vectors, relative to the origin O, given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
-1 \\
3 \\
5
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r}
3 \\
-1 \\
-4
\end{array}\right)
$$

The line l passes through A and is parallel to $O B$. The point N is the foot of the perpendicular from B to l.
(i) State a vector equation for the line l.
(ii) Find the position vector of N and show that $B N=3$.

With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and $\overrightarrow{O B}=3 \mathbf{i}+4 \mathbf{j}$. The point P lies on the line $A B$ and $O P$ is perpendicular to $A B$.
(i) Find a vector equation for the line $A B$.
(ii) Find the position vector of P.

Relative to the origin O, the point A has position vector given by $\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+4 \mathbf{k}$. The line l has equation $\mathbf{r}=9 \mathbf{i}-\mathbf{j}+8 \mathbf{k}+\mu(3 \mathbf{i}-\mathbf{j}+2 \mathbf{k})$.
(i) Find the position vector of the foot of the perpendicular from A to l. Hence find the position vector of the reflection of A in l.

