Binomial expansion

M/J/2005/Q1

Expand $(1 + 4x)^{-\frac{1}{2}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

.

Expand $(2 + 3x)^{-2}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

O/N/2008/Q2

Expand $(1+x)\sqrt{(1-2x)}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.

M/J/2012/Q3

Expand $\sqrt{\left(\frac{1-x}{1+x}\right)}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.

- (i) Express $\frac{3x^2 + x}{(x+2)(x^2+1)}$ in partial fractions. [5]
- (ii) Hence obtain the expansion of $\frac{3x^2 + x}{(x+2)(x^2+1)}$ in ascending powers of x, up to and including the term in x^3 . [5]

- (i) Express $\frac{10}{(2-x)(1+x^2)}$ in partial fractions. [5]
- (ii) Hence, given that |x| < 1, obtain the expansion of $\frac{10}{(2-x)(1+x^2)}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [5]

(i) Express
$$\frac{2-x+8x^2}{(1-x)(1+2x)(2+x)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{2-x+8x^2}{(1-x)(1+2x)(2+x)}$ in ascending powers of x, up to and including the term in x^2 . [5]

- (i) Express $\frac{1+x}{(1-x)(2+x^2)}$ in partial fractions. [5]
- (ii) Hence obtain the expansion of $\frac{1+x}{(1-x)(2+x^2)}$ in ascending powers of x, up to and including the term in x^2 . [5]

Let
$$f(x) = \frac{3x}{(1+x)(1+2x^2)}$$
.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^3 . [5]

- (i) Express $\frac{5x x^2}{(1+x)(2+x^2)}$ in partial fractions. [5]
- (ii) Hence obtain the expansion of $\frac{5x-x^2}{(1+x)(2+x^2)}$ in ascending powers of x, up to and including the term in x^3 . [5]