Coordinate Geometry

Monday, 11 July 2022 1:53 PM

M/J/2006/Q5
The curve $y^{2}=12 x$ intersects the line $3 y=4 x+6$ at two points. Find the distance between the two points.

The three points $A(1,3), B(13,11)$ and $C(6,15)$ are shown in the diagram. The perpendicular from C to $A B$ meets $A B$ at the point D. Find
(i) the equation of $C D$,
(ii) the coordinates of D.

The diagram shows points A, B and C lying on the line $2 y=x+4$. The point A lies on the y-axis and $A B=B C$. The line from $D(10,-3)$ to B is perpendicular to $A C$. Calculate the coordinates of B and C.

In the diagram, A is the point $(-1,3)$ and B is the point $(3,1)$. The line L_{1} passes through A and is parallel to $O B$. The line L_{2} passes through B and is perpendicular to $A B$. The lines L_{1} and L_{2} meet at C. Find the coordinates of C.

The point R is the reflection of the point $(-1,3)$ in the line $3 y+2 x=33$. Find by calculation the coordinates of R.

Three points have coordinates $A(2,6), B(8,10)$ and $C(6,0)$. The perpendicular bisector of $A B$ meets the line $B C$ at D. Find
(i) the equation of the perpendicular bisector of $A B$ in the form $a x+b y=c$,
(ii) the coordinates of D.

The diagram shows a rectangle $A B C D$. The point A is $(2,14), B$ is $(-2,8)$ and C lies on the x-axis. Find
(i) the equation of $B C$,
(ii) the coordinates of C and D.

The three points $A(3,8), B(6,2)$ and $C(10,2)$ are shown in the diagram. The point D is such that the line $D A$ is perpendicular to $A B$ and $D C$ is parallel to $A B$. Calculate the coordinates of D.

The line L_{1} passes through the points $A(2,5)$ and $B(10,9)$. The line L_{2} is parallel to L_{1} and passes through the origin. The point C lies on L_{2} such that $A C$ is perpendicular to L_{2}. Find
(i) the coordinates of C,
(ii) the distance $A C$.

The diagram shows a triangle $A B C$ in which A has coordinates $(1,3), B$ has coordinates $(5,11)$ and angle $A B C$ is 90°. The point $X(4,4)$ lies on $A C$. Find
(i) the equation of $B C$,
(ii) the coordinates of C.

The diagram shows a rectangle $A B C D$ in which point A is $(0,8)$ and point B is $(4,0)$. The diagonal $A C$ has equation $8 y+x=64$. Find, by calculation, the coordinates of C and D.

M/J/2014/Q1

Find the coordinates of the point at which the perpendicular bisector of the line joining $(2,7)$ to $(10,3)$ meets the x-axis.

Points A, B and C have coordinates $A(-3,7), B(5,1)$ and $C(-1, k)$, where k is a constant.
(i) Given that $A B=B C$, calculate the possible values of k.

The perpendicular bisector of $A B$ intersects the x-axis at D.
(ii) Calculate the coordinates of D.

Points A and B have coordinates (h, h) and $(4 h+6,5 h)$ respectively. The equation of the perpendicular bisector of $A B$ is $3 x+2 y=k$. Find the values of the constants h and k.

The point M is the mid-point of the line joining the points $(3,7)$ and $(-1,1)$. Find the equation of the line through M which is parallel to the line $\frac{x}{3}+\frac{y}{2}=1$.

Two points A and B have coordinates $(1,3)$ and $(9,-1)$ respectively. The perpendicular bisector of $A B$ intersects the y-axis at the point C. Find the coordinates of C.

The point A has coordinates $(-2,6)$. The equation of the perpendicular bisector of the line $A B$ is $2 y=3 x+5$.
(i) Find the equation of $A B$.
(ii) Find the coordinates of B.

The point C lies on the perpendicular bisector of the line joining the points $A(4,6)$ and $B(10,2)$. C also lies on the line parallel to $A B$ through $(3,11)$.
(i) Find the equation of the perpendicular bisector of $A B$.
(ii) Calculate the coordinates of C.

The diagram shows a trapezium $A B C D$ in which $A B$ is parallel to $D C$ and angle $B A D$ is 90°. The coordinates of A, B and C are $(2,6),(5,-3)$ and $(8,3)$ respectively.
(i) Find the equation of $A D$.
(ii) Find, by calculation, the coordinates of D.

The point E is such that $A B C E$ is a parallelogram.
(iii) Find the length of $B E$.

The diagram shows a quadrilateral $A B C D$ in which the point A is $(-1,-1)$, the point B is $(3,6)$ and the point C is $(9,4)$. The diagonals $A C$ and $B D$ intersect at M. Angle $B M A=90^{\circ}$ and $B M=M D$. Calculate
(i) the coordinates of M and D,
(ii) the ratio $A M: M C$.

The diagram shows a rectangle $A B C D$. The point A is $(0,-2)$ and C is $(12,14)$. The diagonal $B D$ is parallel to the x-axis.
(i) Explain why the y-coordinate of D is 6 .

The x-coordinate of D is h.
(ii) Express the gradients of $A D$ and $C D$ in terms of h.
(iii) Calculate the x-coordinates of D and B.
(iv) Calculate the area of the rectangle $A B C D$.

In the diagram, the points A and C lie on the x - and y-axes respectively and the equation of $A C$ is $2 y+x=16$. The point B has coordinates $(2,2)$. The perpendicular from B to $A C$ meets $A C$ at the point X.
(i) Find the coordinates of X.

The point D is such that the quadrilateral $A B C D$ has $A C$ as a line of symmetry.
(ii) Find the coordinates of D.
(iii) Find, correct to 1 decimal place, the perimeter of $A B C D$.

