DIFFERENTIATION

M/J/2009/Q9

The diagram shows part of the curve $y = \frac{6}{3x - 2}$.

(i) Find the gradient of the curve at the point where x = 2.

[3]

M/J/2005/Q2

Find the gradient of the curve
$$y = \frac{12}{x^2 - 4x}$$
 at the point where $x = 3$. [4]

O/N/2013/Q3

The equation of a curve is $y = \frac{2}{\sqrt{(5x-6)}}$.

(i) Find the gradient of the curve at the point where x = 2.

[3]

O/N/2019/Q10

The diagram shows part of the curve $y = 1 - \frac{4}{(2x+1)^2}$. (i) Obtain expressions for $\frac{dy}{dx}$

M/J/2006/Q1

A curve has equation $y = \frac{k}{x}$. Given that the gradient of the curve is -3 when x = 2, find the value of the constant k.

M/J/2011/Q4

A curve has equation $y = \frac{4}{3x - 4}$ and P(2, 2) is a point on the curve.

- (i) Find the equation of the tangent to the curve at P. [4]
- (ii) Find the angle that this tangent makes with the *x*-axis. [2]

M/J/2010/Q10

The equation of a curve is $y = \frac{1}{6}(2x - 3)^3 - 4x$.

(i) Find
$$\frac{dy}{dx}$$
. [3]

(ii) Find the equation of the tangent to the curve at the point where the curve intersects the y-axis. [3]

M/J/2005/Q9

A curve has equation $y = \frac{4}{\sqrt{x}}$.

(i) The normal to the curve at the point (4, 2) meets the x-axis at P and the y-axis at Q. Find the length of PQ, correct to 3 significant figures. [6]

M/I/2006/O9

A curve is such that $\frac{dy}{dx} = \frac{4}{\sqrt{(6-2x)}}$, and P(1, 8) is a point on the curve.

(i) The normal to the curve at the point P meets the coordinate axes at Q and at R. Find the coordinates of the mid-point of QR. [5]

O/N/2011/Q8

The equation of a curve is $y = \sqrt{(8x - x^2)}$. Find

(i) an expression for $\frac{dy}{dx}$, and the coordinates of the stationary point on the curve, [4]

O/N/2007/O8

The equation of a curve is $y = (2x - 3)^3 - 6x$.

(i) Express
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ in terms of x. [3]

(ii) Find the *x*-coordinates of the two stationary points and determine the nature of each stationary point. [5]

M/J/2009/Q11

The diagram shows the curve $y = x^3 - 6x^2 + 9x$ for $x \ge 0$. The curve has a maximum point at A and a minimum point on the x-axis at B. The normal to the curve at C(2, 2) meets the normal to the curve at B at the point D.

(i) Find the coordinates of
$$A$$
 and B . [3]

(ii) Find the equation of the normal to the curve at
$$C$$
. [3]

M/J/2007/O10

The equation of a curve is $y = 2x + \frac{8}{x^2}$.

(i) Obtain expressions for
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [3]

- (ii) Find the coordinates of the stationary point on the curve and determine the nature of the stationary point. [3]
- (iii) Show that the normal to the curve at the point (-2, -2) intersects the x-axis at the point (-10, 0). [3]

O/N/2017/Q8

A curve is such that $\frac{dy}{dx} = -x^2 + 5x - 4$.

- (i) Find the *x*-coordinate of each of the stationary points of the curve. [2]
- (ii) Obtain an expression for $\frac{d^2y}{dx^2}$ and hence or otherwise find the nature of each of the stationary points.

M/J/2017/Q9

The equation of a curve is $y = 8\sqrt{x} - 2x$.

- (i) Find the coordinates of the stationary point of the curve. [3]
- (ii) Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the nature of the stationary point. [2]

M/J/2020/Q10

The equation of a curve is $y = 54x - (2x - 7)^3$.

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$. [4]

- (b) Find the coordinates of each of the stationary points on the curve. [3]
- (c) Determine the nature of each of the stationary points. [2]

M/J/2019/Q11

The diagram shows part of the curve $y = \sqrt{(4x+1)} + \frac{9}{\sqrt{(4x+1)}}$ and the minimum point M.

(i) Find expressions for
$$\frac{dy}{dx}$$
 and $\int y dx$. [6]

(ii) Find the coordinates of M. [3]

O/N/2009/Q7

A piece of wire of length 50 cm is bent to form the perimeter of a sector POQ of a circle. The radius of the circle is r cm and the angle POQ is θ radians (see diagram).

(i) Express θ in terms of r and show that the area, $A \text{ cm}^2$, of the sector is given by

$$A = 25r - r^2.$$

(ii) Given that r can vary, find the stationary value of A and determine its nature. [4]

M/J/2010/Q8

A solid rectangular block has a square base of side x cm. The height of the block is h cm and the total surface area of the block is 96 cm^2 .

(i) Express h in terms of x and show that the volume, $V \text{ cm}^3$, of the block is given by

$$V = 24x - \frac{1}{2}x^3. ag{3}$$

Given that x can vary,

(ii) find the stationary value of
$$V$$
, [3]

(iii) determine whether this stationary value is a maximum or a minimum. [2]

The diagram shows a plan for a rectangular park ABCD, in which AB = 40 m and AD = 60 m. Points X and Y lie on BC and CD respectively and AX, XY and YA are paths that surround a triangular playground. The length of DY is x m and the length of XC is 2x m.

(i) Show that the area, $A \text{ m}^2$, of the playground is given by

$$A = x^2 - 30x + 1200.$$
 [2]

(ii) Given that x can vary, find the minimum area of the playground. [3]

M/J/2013/Q8

The volume of a solid circular cylinder of radius r cm is 250π cm³.

(i) Show that the total surface area, $S \text{ cm}^2$, of the cylinder is given by

$$S = 2\pi r^2 + \frac{500\pi}{r}.$$
 [2]

- (ii) Given that r can vary, find the stationary value of S. [4]
- (iii) Determine the nature of this stationary value. [2]

O/N/2019/Q5

The diagram shows a solid cone which has a slant height of 15 cm and a vertical height of h cm.

- (i) Show that the volume, $V \text{ cm}^3$, of the cone is given by $V = \frac{1}{3}\pi(225h h^3)$. [2] [The volume of a cone of radius r and vertical height h is $\frac{1}{3}\pi r^2 h$.]
- (ii) Given that h can vary, find the value of h for which V has a stationary value. Determine, showing all necessary working, the nature of this stationary value. [5]

In the diagram, S is the point (0, 12) and T is the point (16, 0). The point Q lies on ST, between S and T, and has coordinates (x, y). The points P and R lie on the x-axis and y-axis respectively and OPQR is a rectangle.

- (i) Show that the area, A, of the rectangle OPQR is given by $A = 12x \frac{3}{4}x^2$. [3]
- (ii) Given that x can vary, find the stationary value of A and determine its nature. [4]

O/N/2008/Q7

A wire, 80 cm long, is cut into two pieces. One piece is bent to form a square of side x cm and the other piece is bent to form a circle of radius r cm (see diagram). The total area of the square and the circle is A cm².

(i) Show that
$$A = \frac{(\pi + 4)x^2 - 160x + 1600}{\pi}$$
. [4]

(ii) Given that x and r can vary, find the value of x for which A has a stationary value. [4]

O/N/2006/Q9

The diagram shows an open container constructed out of $200 \,\mathrm{cm}^2$ of cardboard. The two vertical end pieces are isosceles triangles with sides $5x \,\mathrm{cm}$, $5x \,\mathrm{cm}$ and $8x \,\mathrm{cm}$, and the two side pieces are rectangles of length $y \,\mathrm{cm}$ and width $5x \,\mathrm{cm}$, as shown. The open top is a horizontal rectangle.

(i) Show that
$$y = \frac{200 - 24x^2}{10x}$$
. [3]

(ii) Show that the volume,
$$V \text{ cm}^3$$
, of the container is given by $V = 240x - 28.8x^3$. [2]

Given that x can vary,

(iii) find the value of
$$x$$
 for which V has a stationary value, [3]

O/N/2005/Q5

The diagram shows the cross-section of a hollow cone and a circular cylinder. The cone has radius 6 cm and height 12 cm, and the cylinder has radius r cm and height h cm. The cylinder just fits inside the cone with all of its upper edge touching the surface of the cone.

(i) Express h in terms of r and hence show that the volume, $V \text{ cm}^3$, of the cylinder is given by

$$V = 12\pi r^2 - 2\pi r^3. ag{3}$$

(ii) Given that r varies, find the stationary value of V. [4]

The diagram shows an open rectangular tank of height h metres covered with a lid. The base of the tank has sides of length x metres and $\frac{1}{2}x$ metres and the lid is a rectangle with sides of length $\frac{5}{4}x$ metres and $\frac{4}{5}x$ metres. When full the tank holds 4 m^3 of water. The material from which the tank is made is of negligible thickness. The external surface area of the tank together with the area of the top of the lid is $A \text{ m}^2$.

(i) Express *h* in terms of *x* and hence show that
$$A = \frac{3}{2}x^2 + \frac{24}{x}$$
. [5]

(ii) Given that x can vary, find the value of x for which A is a minimum, showing clearly that A is a minimum and not a maximum. [5]

O/N/2006/Q8

The equation of a curve is $y = \frac{6}{5 - 2x}$.

- (i) Calculate the gradient of the curve at the point where x = 1. [3]
- (ii) A point with coordinates (x, y) moves along the curve in such a way that the rate of increase of y has a constant value of 0.02 units per second. Find the rate of increase of x when x = 1. [2]

M/J/2012/Q2

The equation of a curve is $y = 4\sqrt{x} + \frac{2}{\sqrt{x}}$.

- (i) Obtain an expression for $\frac{dy}{dx}$. [3]
- (ii) A point is moving along the curve in such a way that the x-coordinate is increasing at a constant rate of 0.12 units per second. Find the rate of change of the y-coordinate when x = 4. [2]

O/N/2014/Q4

A curve has equation $y = \frac{12}{3 - 2x}$.

(i) Find
$$\frac{dy}{dx}$$
. [2]

A point moves along this curve. As the point passes through A, the x-coordinate is increasing at a rate of 0.15 units per second and the y-coordinate is increasing at a rate of 0.4 units per second.

(ii) Find the possible
$$x$$
-coordinates of A . [4]

M/J/2019/Q3

A curve is such that $\frac{dy}{dx} = x^3 - \frac{4}{x^2}$. The point P(2, 9) lies on the curve.

(i) A point moves on the curve in such a way that the x-coordinate is decreasing at a constant rate of 0.05 units per second. Find the rate of change of the y-coordinate when the point is at P. [2]

M/J/2017/Q5

A curve has equation $y = 3 + \frac{12}{2 - x}$.

- (i) Find the equation of the tangent to the curve at the point where the curve crosses the *x*-axis. [5]
- (ii) A point moves along the curve in such a way that the x-coordinate is increasing at a constant rate of 0.04 units per second. Find the rate of change of the y-coordinate when x = 4. [2]

O/N/2016/Q7 The equation of a curve is $y = 2 + \frac{3}{2x - 1}$.

(i) Obtain an expression for
$$\frac{dy}{dx}$$
. [2]

At the point P on the curve, x = 2.

- (iii) Show that the normal to the curve at P passes through the origin. [4]
- (iv) A point moves along the curve in such a way that its x-coordinate is decreasing at a constant rate of 0.06 units per second. Find the rate of change of the y-coordinate as the point passes through P.
 [2]

Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are identical isosceles triangles. Angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is fixed in position with the open top ABCD horizontal. Water is poured into the tank at a constant rate of 200 cm³ s⁻¹. The depth of water, t seconds after filling starts, is h cm (see Fig. 2).

- (i) Show that, when the depth of water in the tank is h cm, the volume, $V \text{ cm}^3$, of water in the tank is given by $V = (40\sqrt{3})h^2$. [3]
- (ii) Find the rate at which h is increasing when h = 5. [3]

M/J/2020/Q3

A weather balloon in the shape of a sphere is being inflated by a pump. The volume of the balloon is increasing at a constant rate of 600 cm³ per second. The balloon was empty at the start of pumping.

(a) Find the radius of the balloon after 30 seconds. [2]

(b) Find the rate of increase of the radius after 30 seconds. [3]