Section B [48 marks]

Answer four questions in this section.
Each question in this section carries 12 marks.

7 A, B , C , D and E are five different shaped blocks of ice stored in a refrigerated room.
(a) At $11 \mathrm{p} . \mathrm{m}$. on Monday the cooling system failed, and the blocks started to melt.

At the end of each 24 hour period, the volume of each block was 12% less than its volume at the start of that period.
(i) Block A had a volume of $7500 \mathrm{~cm}^{3}$ at $11 \mathrm{p} . \mathrm{m}$. on Monday.

Calculate its volume at $11 \mathrm{p} . \mathrm{m}$. on Wednesday.
(ii) Block B had a volume of $6490 \mathrm{~cm}^{3}$ at $11 \mathrm{p} . \mathrm{m}$. on Tuesday.

Calculate its volume at $11 \mathrm{p} . \mathrm{m}$. on the previous day.
(iii) Showing your working clearly, find on which day the volume of Block C was half its volume at 11 p.m. on Monday.
(b) [The volume of a sphere is $\frac{4}{3} \pi r^{3}$.]
[The surface area of a sphere is $4 \pi r^{2}$.]
At 11 p.m. on Monday Block D was a hemisphere with radius 18 cm .
Calculate
(i) its volume,
(ii) its total surface area.
(c) As Block E melted, its shape was always geometrically similar to its original shape. It had a volume of $5000 \mathrm{~cm}^{3}$ when its height was 12 cm .
Calculate its height when its volume was $1080 \mathrm{~cm}^{3}$.

11 [Volume of a cone $=\frac{1}{3} \pi r^{2} h$]

The solid above consists of a cone with base radius r centimetres on top of a cylinder of radius r centimetres.
The height of the cylinder is twice the height of the cone.
The total height of the solid is H centimetres.
(a) Find an expression, in terms of π, r and H, for the volume of the solid. Give your answer in its simplest form.

Answer
(b) It is given that $r=10$ and the height of the cone is 15 cm .
(i) Show that the slant height of the cone is 18.0 cm , correct to one decimal place.
(ii) Find the circumference of the base of the cone.
(iii) The curved surface area of the cone can be made into the shape of a sector of a circle with angle θ°.

Show that θ is 200 , correct to the nearest integer.

(iv) Hence, or otherwise, find the total surface area of the solid.

10 The diagram shows a major segment of a circle with centre O and radius 15 cm . A and B are two points on the circumference such that $A \hat{O} B=60^{\circ}$.

(a) Calculate
(i) the area of the major segment,
\qquad
(ii) the perimeter of the major segment.
(b) Shape I is formed by joining this segment to a trapezium, $A B C D$, along $A B$. $A B$ is parallel to $D C, D C=25 \mathrm{~cm}$ and the perpendicular height of the trapezium is $h \mathrm{~cm}$. The area of the trapezium is $248 \mathrm{~cm}^{2}$.

Calculate h.

(c) Shape II is geometrically similar to Shape I. The longest side of the trapezium in Shape II is 5 cm .

Shape II
(i) Find the radius, r, of the segment in Shape II.
(ii) Find the total area of Shape II.

$O A B$ is a sector of a circle, centre O, and radius 10 cm .
$A \hat{O} B=72^{\circ}$ and C is the point on the arc $A B$ such that $O C$ bisects $A \hat{O} B$.
(a) Calculate the perimeter of sector $O A B$.

Answer \qquad cm [3]
(b) (i) Calculate the area of sector $O A B$.
(ii) Calculate the total shaded area.
(c)

D is the point on the $\operatorname{arc} A B$ such that $A \hat{O} D: D \hat{O} B=1: 2$.
Gavin says that the shaded area on this diagram is the same as the shaded area calculated in part (b)(ii).

Is he correct? Show your working.
Answer

8 A birthday cake is in the shape of a cylinder.
There are two layers of cake and one layer of icing.

Each layer of cake has radius 10 cm and height 3 cm .
The icing, between the two layers of cake, has radius 10 cm and height 12 mm .
(a) Calculate the volume of icing in the birthday cake.

Give your answer in cm^{3}.
\qquad cm^{3}
(b) The top and curved surface of the birthday cake are now covered with chocolate.

Calculate the area of the birthday cake that is covered with chocolate.
\qquad cm^{2}
(c) Anil has a slice of this chocolate-covered birthday cake.

His slice is a prism of height 7.5 cm .
The top of the cake is a sector, radius 10.3 cm and angle x°.
The volume of his slice is $200 \mathrm{~cm}^{3}$.
Calculate the value of x.

$$
x=
$$

4 (a) [Volume of a sphere $=\frac{4}{3} \pi r^{3}$]
[Surface area of a sphere $=4 \pi r^{2}$]

The diagram shows a solid formed by joining a cylinder to a hemisphere.
The diameter of the cylinder is 9 cm and its height is 16 cm .
(i) The volume of the hemisphere is equal to the volume of the cylinder.

Show that the radius of the hemisphere is 7.86 cm , correct to 2 decimal places.
(ii) Calculate the total surface area of the solid.
(b) A different solid is in the shape of a cuboid.

The cuboid measures 8 cm by 4 cm by 6 cm .
These measurements are given correct to the nearest centimetre.
Calculate the lower bound of the volume of the cuboid.
cm^{3} [2]

