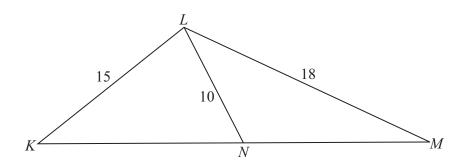

7 (a)

PQRS is a trapezium.


 $P\widetilde{Q} = 17 \text{ cm}, \ QR = 8 \text{ cm}, SR = 29 \text{ cm} \text{ and } S\widehat{R}Q = 90^{\circ}.$

Calculate

(i) the area of PQRS, [1]

(ii) $P\hat{S}R$. [2]

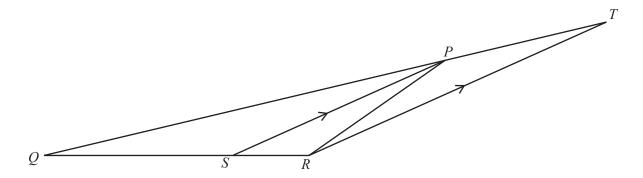
(b)

In the diagram, triangle KLM is similar to triangle LNM.

 $KL = 15 \,\text{cm}$, $LM = 18 \,\text{cm}$ and $LN = 10 \,\text{cm}$.

(i) Find *KM*. [2]

(ii) Find *KN*. [2]

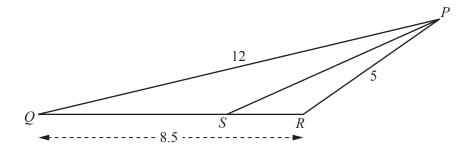

(iii) P is the point on LM such that PN is parallel to LK.

Find $\frac{\text{the area of triangle } NPM}{\text{the area of trapezium } KLPN}$.

Give your answer as a fraction in its simplest form.

[2]

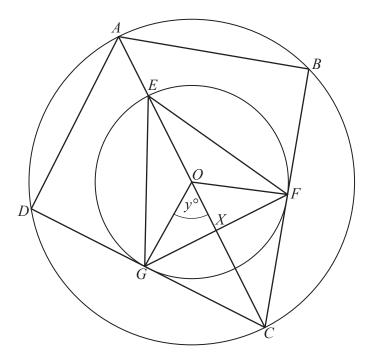
(b)



In the diagram, PS is the bisector of \hat{QPR} . QPT and QSR are straight lines. RT is parallel to SP.

(i) Explain why PT = PR.

[2]


(ii) This diagram shows part of the above diagram. PQ = 12 cm, PR = 5 cm and QR = 8.5 cm.

It is given that $\frac{PQ}{PR} = \frac{QS}{SR}$.

Find SR.

8

The diagram shows two circles each with centre O. A, B, C and D are points on the circumference of the large circle. E, F and G are points on the circumference of the small circle. CGD and CFB are tangents to the small circle. Lines AEOC and FG intersect at 90° at X. $G\hat{O}X = y^{\circ}$.

- (a) Find each of these angles, as simply as possible, in terms of y. Give reasons for your answers.
 - (i) $G\hat{E}O$

(ii) $G\hat{C}X$

Answer $G\hat{C}X =$ because [2]

(iii) $D\hat{A}B$

Answer $D\hat{A}B =$ because [2]

© UCLES 2017 4024/22/O/N/17

(b)	Complete the sentence.	
	Triangle EGC is congruent to triangle	[1]
(c)	Prove that triangle <i>ADC</i> is similar to triangle <i>OGC</i> . Give a reason for each statement you make.	
		[2]
(d)	What special type of quadrilateral is AOGD?	
		Answer[1]
(e)	Find the ratio	
	(i) area of triangle OGC : area of triangle ADC,	
	(ii) area of triangle OGC : area of quadrilateral $ABCD$.	Answer[1]
		<i>Answer</i> [1]