| (c) | Write down the momentum of D | | |--------------|---|--------| | (a) | Write down the momentum of P . | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | (b) | After the collision P continues to move in the same direction with speed $0.3 \mathrm{ms^{-1}}$. | | | | | | | | Find the speed of Q after the collision. | | | | | | | | | | | | | •••••• | | | | ••••• | | | | | | | | | | | | •••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | hori | all smooth spheres A and B , of equal radii and of masses 5 kg and 3 kg respectively, lie on a smooth spheres A and B , of equal radii and of masses 5 kg and 3 kg respectively, lie on a smooth sphere. Initially B is at rest and A is moving towards B with speed 8.5 m s ⁻¹ . The sphere and after the collision A continues to move in the same direction but with a quarter of the sphere. | eres | |------------|---|-------| | (a) | Find the speed of B after the collision. | [3] | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | (b) | Find the loss of kinetic energy of the system due to the collision. | [2] | | | | | | | | | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | sph | eres collide A continues to move in the same direction but with half the speed of B . | | |-------------|--|-------------| | (a) | Find the speed of B after the collision. | [2 | | | | | | | | | | | | ••••• | | | | ••••• | lar | hird small smooth sphere C , of mass 1 kg and with the same radius as A and B , is at rne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | | | lar
ut | ne. B now collides directly with C . After this collision B continues to move in the same | e direction | | lar
ut | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | e direction | | lar
ut | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | | | lar
ut | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | e direction | | lar
ut | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | e direction | | lar
ut | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | e direction | | olar
out | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | e direction | | olar
out | ne. B now collides directly with C . After this collision B continues to move in the same with one third the speed of C . | e direction | | ••••• | | | | | | |-----------------|------------------|-----------------|-------------------|------------------|--------| | | | ••••• | | ••••• | •••••• | •••••• | •••••• | •••••• | ••••• | •••••• | | | | | | | | | | | | | | | | A and B coale | esce during this | collision. | | | | | | | | ystem due to the | three collisions | | | Tilld the total | loss of killetic | chergy in the s | system due to the | three comstons | • | | | | | | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | ••••• | 9709/42/O/N/22 | |----------------| |----------------| | o
E | on a
3 w | the particles A , B and C of masses 0.3 kg, 0.4 kg and m kg respectively lie at rest in a straight line a smooth horizontal plane. The distance between B and C is 2.1 m. A is projected directly towards ith speed $2 \mathrm{m s^{-1}}$. After A collides with B the speed of A is reduced to $0.6 \mathrm{m s^{-1}}$, still moving in same direction. | |--------|-------------|--| | (| a) | Show that the speed of B after the collision is $1.05 \mathrm{m s^{-1}}$. [2] | er the collision between A and B , B moves directly towards C . Particle B now collides with C er this collision, the two particles coalesce and have a combined speed of $0.5 \mathrm{ms^{-1}}$. | | (| b) | Find m . [2] | Come | bined par | ticie. | | | | | | | | | |-------|---|--------|---|--------|---|---|--------|---|---|---| ••••• | | | | ••••• | ••••• | | | | | | | | | | | | | | | | | | | ••••• | • | | • | •••••• | ••••• | •••••• | •••••• | ••••• | •••••• | • | ••••• | ••••• | | | | | | | | | | | | | | | | | | | ••••• | • | | • | ••••• | ••••• | •••••• | | ••••• | •••••• | ••••• | ••••• | | | | | ••••• | | | | | | | | | | | | | | | | | | | ••••• | ••••••• | • | • | •••••• | •••••• | •••••• | • | •••••• | •••••• | ••••• | ••••• | | | | ••••• | • | • | | • | • | ••••• | | | | | | | | | | | | | | ••••• | | • | •••••• | •••••• | ••••• | •••••• | • | ••••• | •••••• | ••••• | ••••• | | | | ••••• | ••••• | ••••• | | ••••• | •••••• | ••••• | ••••• | | | | | | | | | | | | | | | | | | | ••••• | | | • | •••••• | ••••• | •••••• | | ••••• | •••••• | ••••• | ••••• | | | | | | | | | | | | | | | | | | | ••••• | | | • | •••••• | ••••• | ••••• | | • | ••••• | ••••• | ••••• | | | | ••••• | ••••• | | | | | | | | | | | | | | | | | | | ••••• | | | • | •••••• | ••••• | •••••• | | ••••• | •••••• | ••••• | | | | | | | | | | | | | Particles P and Q have masses $m \log$ and $2m \log$ respectively. The particles are initially held at rest 6.4 m apart on the same line of greatest slope of a rough plane inclined at an angle α to the horizontal, where $\sin \alpha = 0.8$ (see diagram). Particle P is released from rest and slides down the line of greatest slope. Simultaneously, particle Q is projected up the same line of greatest slope at a speed of $10 \,\mathrm{m\,s^{-1}}$. The coefficient of friction between each particle and the plane is 0.6. | (a) | Show that the acceleration of Q up the plane is $-11.6 \mathrm{m s^{-2}}$. | [4] | |-----|--|-------| | | | | | | | | | | | | | | | ••••• | 553 | | (b) | Find the time for which the particles are in motion before they collide. | [5] | ••••• | | | | ••••• | | ••••• | | ••••• | | |-------------|--------------|-----------------------|---|---------------------------|---------------------------|---------------------------|---------------------------| | ••••• | | | | | | | | | | | | | | | | | | | •••••• | ••••• | • | •••••• | ••••• | ••••• | | | | | | | | | ••••• | ••••• | • | ••••• | ••••• | ••••• | ••••• | | | ••••• | | | | | | | | | | | | | | | | | | cles coales | ce on imp | act. | | | | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | 1 | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | l | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | | | | speed of th | e combine | ed particle | immediate | ly after the | impact. | i | icles coales | icles coalesce on imp | icles coalesce on impact. | | particle A is projected vertically upwards from level ground with an initial speed of 30 m sees ame instant a particle B is released from rest 15 m vertically above A . The mass of one articles is twice the mass of the other particle. During the subsequent motion A and B collipsed to form particle C . | | | | | | |--|--------|--|--|--|--| | Find the difference between the two possible times at which C hits the ground. | [8] | ••••• | | | | | | | | | | | | | | •••••• | ••••• | | | | |